869 research outputs found

    Spontaneous time reversal symmetry breaking in the pseudogap state of high-Tc superconductors

    Full text link
    When matter undergoes a phase transition from one state to another, usually a change in symmetry is observed, as some of the symmetries exhibited are said to be spontaneously broken. The superconducting phase transition in the underdoped high-Tc superconductors is rather unusual, in that it is not a mean-field transition as other superconducting transitions are. Instead, it is observed that a pseudo-gap in the electronic excitation spectrum appears at temperatures T* higher than Tc, while phase coherence, and superconductivity, are established at Tc (Refs. 1, 2). One would then wish to understand if T* is just a crossover, controlled by fluctuations in order which will set in at the lower Tc (Refs. 3, 4), or whether some symmetry is spontaneously broken at T* (Refs. 5-10). Here, using angle-resolved photoemission with circularly polarized light, we find that, in the pseudogap state, left-circularly polarized photons give a different photocurrent than right-circularly polarized photons, and therefore the state below T* is rather unusual, in that it breaks time reversal symmetry11. This observation of a phase transition at T* provides the answer to a major mystery of the phase diagram of the cuprates. The appearance of the anomalies below T* must be related to the order parameter that sets in at this characteristic temperature .Comment: 11 pages, 4 figure

    Locally critical quantum phase transitions in strongly correlated metals

    Full text link
    When a metal undergoes a continuous quantum phase transition, non-Fermi liquid behaviour arises near the critical point. It is standard to assume that all low-energy degrees of freedom induced by quantum criticality are spatially extended, corresponding to long-wavelength fluctuations of the order parameter. However, this picture has been contradicted by recent experiments on a prototype system: heavy fermion metals at a zero-temperature magnetic transition. In particular, neutron scattering from CeCu6x_{6-x}Aux_x has revealed anomalous dynamics at atomic length scales, leading to much debate as to the fate of the local moments in the quantum-critical regime. Here we report our theoretical finding of a locally critical quantum phase transition in a model of heavy fermions. The dynamics at the critical point are in agreement with experiment. We also argue that local criticality is a phenomenon of general relevance to strongly correlated metals, including doped Mott insulators.Comment: 20 pages, 3 figures; extended version, to appear in Natur

    Accurate theoretical fits to laser ARPES EDCs in the normal phase of cuprate superconductors

    Full text link
    Anderson has recently proposed a theory of the strange metal state above Tc in the high Tc superconductors. [arXiv:cond-mat/0512471] It is based on the idea that the unusual transport properties and spectral functions are caused by the strong Mott- Hubbard interactions and can be computed by using the formal apparatus of Gutzwiller projection. In ref. 1 Anderson computed only the tunneling spectrum and the power-law exponent of the infrared conductivity. He had calculated the energy distribution curves (EDCs) in angle resolved photoemission spectroscopy (ARPES) but was discouraged when these differed radically from the best ARPES measurements available at the time, and did not include them. In this letter we compare the spectral functions computed within this model to the novel laser-ARPES data of the Dessau group.These are found to capture the shape of the experimental EDCs with unprecedented accuracy and in principle have only one free parameter

    Linear-T resistivity and change in Fermi surface at the pseudogap critical point of a high-Tc superconductor

    Full text link
    A fundamental question of high-temperature superconductors is the nature of the pseudogap phase which lies between the Mott insulator at zero doping and the Fermi liquid at high doping p. Here we report on the behaviour of charge carriers near the zero-temperature onset of that phase, namely at the critical doping p* where the pseudogap temperature T* goes to zero, accessed by investigating a material in which superconductivity can be fully suppressed by a steady magnetic field. Just below p*, the normal-state resistivity and Hall coefficient of La1.6-xNd0.4SrxCuO4 are found to rise simultaneously as the temperature drops below T*, revealing a change in the Fermi surface with a large associated drop in conductivity. At p*, the resistivity shows a linear temperature dependence as T goes to zero, a typical signature of a quantum critical point. These findings impose new constraints on the mechanisms responsible for inelastic scattering and Fermi surface transformation in theories of the pseudogap phase.Comment: 24 pages, 6 figures. Published in Nature Physics. Online at http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys1109.htm

    High-transition-temperature superconductivity in the absence of the magnetic-resonance mode

    Full text link
    The fundamental mechanism that gives rise to high-transition-temperature (high-Tc) superconductivity in the copper oxide materials has been debated since the discovery of the phenomenon. Recent work has focussed on a sharp 'kink' in the kinetic energy spectra of the electrons as a possible signature of the force that creates the superconducting state. The kink has been related to a magnetic resonance and also to phonons. Here we report that infrared spectra of Bi2Sr2CaCu2O(8+d), (Bi-2212) show that this sharp feature can be separated from a broad background and, interestingly, weakens with doping before disappearing completely at a critical doping level of 0.23 holes per copper atom. Superconductivity is still strong in terms of the transition temperature (Tc approx 55 K), so our results rule out both the magnetic resonance peak and phonons as the principal cause of high-Tc superconductivity. The broad background, on the other hand, is a universal property of the copper oxygen plane and a good candidate for the 'glue' that binds the electrons.Comment: 4 pages, 3 figure

    Field-induced quantum fluctuations in the heavy fermion superconductor CeCu2Ge2

    Get PDF
    Quantum-mechanical fluctuations in strongly correlated electron systems cause unconventional phenomena such as non-Fermi liquid behavior, and arguably high temperature superconductivity. Here we report the discovery of a field-tuned quantum critical phenomenon in stoichiometric CeCu2Ge2, a spin density wave ordered heavy fermion metal that exhibits unconventional superconductivity under ~ 10 GPa of applied pressure. Our finding of the associated quantum critical spin fluctuations of the antiferromagnetic spin density wave order, dominating the local fluctuations due to single-site Kondo effect, provide new information about the underlying mechanism that can be important in understanding superconductivity in this novel compound.Comment: Heavy Fermion, Quantum Critical Phenomeno

    Bounding the pseudogap with a line of phase transitions in YBCO cuprate superconductors

    Full text link
    Close to optimal doping, the copper oxide superconductors show 'strange metal' behavior, suggestive of strong fluctuations associated with a quantum critical point. Such a critical point requires a line of classical phase transitions terminating at zero temperature near optimal doping inside the superconducting 'dome'. The underdoped region of the temperature-doping phase diagram from which superconductivity emerges is referred to as the 'pseudogap' because evidence exists for partial gapping of the conduction electrons, but so far there is no compelling thermodynamic evidence as to whether the pseudogap is a distinct phase or a continuous evolution of physical properties on cooling. Here we report that the pseudogap in YBCO cuprate superconductors is a distinct phase, bounded by a line of phase transitions. The doping dependence of this line is such that it terminates at zero temperature inside the superconducting dome. From this we conclude that quantum criticality drives the strange metallic behavior and therefore superconductivity in the cuprates

    An explanation for a universality of transition temperatures in families of copper oxide superconductors

    Full text link
    A remarkable mystery of the copper oxide high-transition-temperature (Tc) superconductors is the dependence of Tc on the number of CuO2 layers, n, in the unit cell of a crystal. In a given family of these superconductors, Tc rises with the number of layers, reaching a peak at n=3, and then declines: the result is a bell-shaped curve. Despite the ubiquity of this phenomenon, it is still poorly understood and attention has instead been mainly focused on the properties of a single CuO2 plane. Here we show that the quantum tunnelling of Cooper pairs between the layers simply and naturally explains the experimental results, when combined with the recently quantified charge imbalance of the layers and the latest notion of a competing order nucleated by this charge imbalance that suppresses superconductivity. We calculate the bell-shaped curve and show that, if materials can be engineered so as to minimize the charge imbalance as n increases, Tc can be raised further.Comment: 15 pages, 3 figures. The version published in Natur

    Powerlaw optical conductivity with a constant phase angle in high Tc superconductors

    Get PDF
    In certain materials with strong electron correlations a quantum phase transition (QPT) at zero temperature can occur, in the proximity of which a quantum critical state of matter has been anticipated. This possibility has recently attracted much attention because the response of such a state of matter is expected to follow universal patterns defined by the quantum mechanical nature of the fluctuations. Forementioned universality manifests itself through power-law behaviours of the response functions. Candidates are found both in heavy fermion systems and in the cuprate high Tc superconductors. Although there are indications for quantum criticality in the cuprate superconductors, the reality and the physical nature of such a QPT are still under debate. Here we identify a universal behaviour of the phase angle of the frequency dependent conductivity that is characteristic of the quantum critical region. We demonstrate that the experimentally measured phase angle agrees precisely with the exponent of the optical conductivity. This points towards a QPT in the cuprates close to optimal doping, although of an unconventional kind.Comment: pdf format, 9 pages, 4 color figures include
    corecore